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Introduction

Kidney transplantation is the treatment of choice for 
patients with end-stage kidney diseases (ESKD) that 
increases patients’ survival and improve quality of life 
(1,2). During the past decades by introduction of new and 
potent immunosuppressive drugs and improvements in 
surgical techniques, the incidence of acute rejection (AR) 
has decreased from 50% to about 10%. Early detection 
of AR and early initiation of proper anti-rejection therapy 
remains as a frequent and serious challenge in preventing 
allograft damage or loss (3-5). Currently, acute allograft 
rejection is diagnosed by rising serum creatinine level or by 
performing multiple and repeated kidney allograft biopsies. 
Allograft biopsy is invasive, costly and may be associated 
with poor interpretation, sampling error or even very rarely 
with graft loss (6-8). Unfortunately, rise in serum creatinine 
level or histological abnormalities in biopsy is seen when 
approximately 40–50% of reversible or irreversible graft 
parenchyma damage has been already occurred (9,10). 

The etiology of AR is related to the infiltrating cells 
of the recipient’s immune system that affects kidney 
hemodynamics and molecular regulatory factors and in turn 
leads to T-cell mediated or adaptive antibody-mediated 
graft rejection (11-13). 

By understanding of non-coding RNAs’ (ncRNAs) 
function, cellular biology has revolutionized and a totally 
novel level of gene transcription regulation mechanism 
has been introduced which gain the attention of research 
groups to explore different expression patterns of ncRNAs 
in the field of organ transplantation (14,15). To date myriad 
efforts have been done to find out more about molecular 
mechanisms underlying AR to identify patients at high risk 
and early detection of affected patients (16,17). It is evident 
that the pathologic processes at molecular level occur long 
before histological abnormalities and clinical manifestations. 
Unfortunately we are still far away from understanding 
ncRNAs’ related molecular signaling networks which occur 
in AR.
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Molecular mechanisms of AR at a glance

Innate and adaptive immune systems both play key roles in 
rejection mechanism. Being a result of genetic differences 
between organ donor and recipient, transplanted graft 
consists of many foreign antigens that can trigger the 
recipient’s immune response and lead to activation of T 
and B cells of recipient’s adaptive immune system following 
recognition of non-self antigens (alloimmune response) (18).  
Allorecognition mainly depends on the cell-surface 
proteins called major histocompatibility complex (MHC) 
molecules. There are two classes of MHCs: class I, that are 
constitutively expressed on all nucleated cells; and class II, 
that are constitutively expressed only on antigen presenting 
cells (APCs) such as dendritic cells (DCs), macrophages 
(MQs) and the B cells. After vascularization of a transplanted 
organ, depending on the source of the APCs, recipient’s T 
cells recognize donor-derived antigens through two distinct 
pathways: direct pathway, in which intact non-self MHC 
molecules on the surface of donor cells is recognized and a 
potent anti-graft immune response is elicited; and indirect 
pathway, in which donor fragmented MHC molecules on 
the surface of recipient’s MHC molecules is recognized that 
induce a less intense immune response (18,19). In direct 
pathway, CD8 positive cytotoxic T cells recognize peptides 
within class I MHC molecules while CD4 positive helper T 
cells recognize peptides within class II MHC molecules. It is 
believed that alloreactive T cells have the ability to recognize 
polymorphic residues on allogenic MHC regardless of 
processed peptide bound to it (20). After T cell receptor CD3 
(TCR-CD3) associated allorecognition-specific signal (signal 
1) and accessory (CD4 or CD8) and costimulatory (ex: CD40/
CD40L or CD28/B7 pathway) signal (signal 2), a chain 
of signaling protein phosphorylation is induced for genes 
transcription and T cells become activated (18,19,21-23).  
Tissue destruction happens following T cell mediated lysis of 
graft cells, activation of accessory T cells and their byproducts 
such as granzyme B and perforin, B cells mediated anti-
transplant antibody production, cytokines production and 
complement activation (18,19,24,25). Regulatory T cells 
(Treg) can suppress immune responses through suppressor 
cytokines production, modulating of DCs’ maturation/
function and suppression of effector cells; such as MQs and 
natural killer (NK) cells (18,19,26-28) providing tolerance 
and graft survival in transplant recipients. Activated T and B 
cells also can differentiate into memory cells that can respond 
more quickly and strongly to an antigen years after its first 
presentation (19).

Definition of ncRNAs

In humans, genome consists of the intron sequences, 3’ 
or 5’ untranslated regions, the protein—coding sequences 
(~28%) and other transcripts that are referred to as 
ncRNAs (29). Since they play important roles in regulatory 
pathways engaged in biological functions and human 
diseases, in recent years this field has gained international 
attention by investigators as a new discipline in biological 
research. However except for miRNAs, still intense efforts 
are needed to focus on elucidating detailed function and 
mechanisms of action underlying other types of ncRNAs. 
Non-coding RNAs are divided into three groups according 
their length: (I) small ncRNAs such as: endogenous small 
interfering RNAs (endo-siRNAs), microRNAs (miRNAs), 
Piwi-interacting RNAs (piRNAs), transcription initiation 
RNAs (tiRNAs); (II) mid-size ncRNAs such as: transfer 
RNAs (tRNAs), ribosomal RNAs (rRNAs), small nuclear 
RNAs (snRNAs) and small nucleolar RNAs (snoRNAs); 
and (III) long ncRNAs such as: XIST, HOTAIR, AIR, 
very long intergenic RNAs (vlincRNAs), macro lncRNAs. 
Many of ncRNAs may fall into more than one group such 
as: promoter associated RNAs (PATs), enhancer associated 
RNAs (eRNAs) and circular RNAs (circRNAs) (30-34). Part 
of currently identified nc-RNAs and their characteristics are 
highlighted in (Table 1). Some other nc-RNAs which are not 
described in H. sapiens are not mentioned here.

MiRNAs, lncRNAs and circRNAs have been detected 
in tissue samples and easily accessible body fluids such 
as peripheral blood mononuclear cells (PBMCs), serum, 
plasma, urine cell pellets and urine supernatant (58-62). 
They even are found in packed forms into macrovesicles, 
exosomes or HDL and can be picked up by neighboring 
cells functioning as secondary messenger molecules 
and growing evidence shows that their dysregulation is 
implicated in kidney diseases and AR (63-67). Taking the 
aforementioned kidney biopsy substantial risks and the 
existence of an urgent need to discover early noninvasive 
biomarkers, ncRNAs seems to be as promising candidates 
to tackle these problems by better stratification of rejection 
risks, diagnosis, monitoring the progression of AR and 
evaluation of treatment strategies which in turn may lead to 
improvement in allograft survival and patient outcome.

Biogenesis and function of MicroRNA

MicroRNAs (miRNAs) are short (~22 nt in length) single 
stranded endogenous non-coding RNAs that are able to 
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Table 1 Part of currently identified nc-RNAs and their characteristics

RNA species Full name Function Length References

Housekeeping/infra-structural ncRNAs

tRNA Transfer RNA Amino acids carriers 73–93 (35)

snRNA Small nuclear RNA RNA splicing 90–216 (36)

snoRNA Small nucleolar RNAs RNA modifications 60–90 (37)

rRNA Ribosomal RNA Translation machinery 5SrRNA =~120, 5.8SrRNA 
=~160, 28SrRNA =~4,200, 
18SrRNA =~1,900

(38)

Small sized ncRNAs mainly with regulatory roles

miRNA MicroRNA RNA stability and translation control 20–25 (39)

piRNA Piwi-interacting RNA Silencing transposon and mRNA decay 26–31 (40)

endo-siRNA Endogenous small 
interfering RNA

RNA degradation 18–30 (41)

tiRNA Transcription initiation RNA Marking or regulating the epigenetic landscape 
around transcription start sites

13–28 (42)

eRNA Enhancer associated RNA Regulation of gene expression <2,000 (50–2,000) (43)

PASR Promoter associated RNA Correlate with the expression state of protein-
coding genes

19–70 (44-46)

TTSa RNA Transcription termination 
site associated RNA

Epigenetic control of gene expression 22–24 (47)

TASR Termini-associated short 
RNA

These sRNAs antisense to the 3’ ends of the 
annotated transcripts could increase the RNA copy 
numbers

20–70 (45,46)

nro-RNA Nuclear run-on assay 
derived RNAs

Probably play role in promoter activation and 
transcription orientation

Short RNAs mapping 20 to 50 
downstream to transcriptions 
starting sites of mRNAs

(48)

Long sized ncRNAs mainly with regulatory roles

HOTAIR HOX transcript antisense 
RNA 

Promoting epigenetic repression of Homeobox D 
gene cluster 

2.2 Kb (49)

XIST X-inactive specific 
transcript

X chromosome inactivation mediated by xist RNA 
stabilization 

Full length sequences have 
not been determined

(50)

AIR The autoimmune regulator Silencing autosomal imprinted genes Full length transcripts have 
yet to be characterized

(51)

PROMPT Promoter upstream 
transcripts

Unknown since they are rapidly degraded by the 
RNA exosome enzymes

Hundreds of nt (52)

PALR Promoter-associated long 
RNAs

May regulate gene expression and function as a 
recognition motif to direct epigenetic silencing 
complexes to the corresponding targeted promoters 
to mediate transcriptional silencing in human cells

Hundreds nt long RNAs 
spanning regions on proximal 
promoters to the first exon

(45,53)

TALR Terminus-associated long 
RNAs

May be primary transcripts for the production of 
short RNAs or correlate with the expression state of 
protein-coding genes

~3,100 nt (45,54)

T-UCR Transcribed ultraconserved 
regions

Regulation of alternative splicing and gene 
expression, and altered in some of human cancers

>200 nt (55)

circRNA Circular RNA Regulation of gene transcription acting as miRNA 
sponges, or binding to RNA-associated proteins

100 bp to 4 kb (56,57)
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regulate gene expression by repressing mRNA translation 
or enhancing of mRNA decay (68,69). Several studies 
has shown that miRNA play pivotal roles in wide range 
of biological processes, such as cell differentiation, organ 
development, apoptosis, innate and adaptive immunity, cell 
death, stress responses and diseases (70-74). MiRNAs exhibit 
temporal and tissue-specific expression patterns. The miRNA 
biogenesis starts from long primary transcripts of relative 
genes (pri-miRNA) generated from RNA polymerase II 
(RNA Pol II). Following cleavage by microprocessor complex 
DROSHA and Di-George syndrome critical region gene 8 
(DGCR8), a stem-loop structural precursor (pre-miRNA) 
of about 70 nt long is generated and then exported to the 
cytoplasm by Exportine5 through the nuclear pores where 
they are further processed by the Dicer into ~22 nt duplexes 
of mature miRNAs. After unwinding of dsRNA and loading 
of guide-strand onto the RNA-Induced Silencing Complex 
(RISC), the final complex recognizes target mRNAs via 
complementary binding of seed sequences (6–8 nt) to them 
and in turn degrade them or inhibit their translations (75-77). 
Intriguing fact about microRNAs is that a single type miRNA 
is able to bind to many different mRNA targets and regulates 
their expression. On the other hand, a single mRNA can 
be targeted by variety of miRNAs (78,79). Some evidences 
showed that miRNAs can play roles as transcriptional 
activators or co-activators of several genes (80). It is believed 
that AR, as frequent complication of kidney transplant, is 
associated with alterations in interplay relationship between 
mRNAs and miRNAs that are highly regulated molecular 
mechanisms (81). Thank to solid base technologies studying 
and monitoring of antibody mediated immunity has been 
remarkably progressed, but T-cell mediated immunity is still 
mainly depends on invasive tissue biopsies (67,82,83).

Biogenesis and function of lncRNA

Noticeable portion of human genome is actively transcribed 
into lncRNAs that recently has been shown some of them 
harbor short open reading frames (sORF) which minority of 
them translated to stable and functional peptides with even 
enhancer role (84-87). Most of lncRNAs but not all of them 
resemble mRNAs with respect to synthesizing by RNA Pol 
II or rarely by RNA Pol III (88), 5’capped (except for the 
intronic RNAs and circRNAs) and 3’-end polyadenylated, 
non polyadenylated or as both forms (bimorphic transcripts) 
(89-92). Aside RNA Pol machinery, for their transcription, 
they need assisting factors such as pre-initiation complex, 
mediators,  transcription elongation complex and 

transcription factors (93). Their promoters are more 
conserved than the promoter of protein coding genes (94) 
and enriched in A/T mono-, di- and trinucleotide stretches 
while the levels of histone H3K4 trimethylation (H3K4me3) 
are reduced in them leading lower transcription rate (95). 
Just like as protein coding genes, lncRNA genes comprise 
multi-exonic regions with identical splicing signals that 
leads to production of many different isoforms with specific 
functions (96-98).

lncRNAs may localize either in nucleus or in cytosol (99)  
but under special conditions such as environmental 
changes or infection they can be delocalized from one 
cellular compartment to another (100). Nuclear lncRNAs 
mainly are related to chromatin architecture of genes in 
cis or in trans (101) while cytoplasmic ones are believed 
to be competing endogenous RNAs that can regulate  
miRNAs (101). lncRNAs exhibit highly specific tissue- and 
cell-type expression patterns compared with protein coding 
genes (93,102). On the basis of their genomic location they 
are categorized into six following groups: (I) intergenic; (II) 
intronic; (III) bidirectional protein associated; (IV) sense; (V) 
antisense and (VI) enhancer associated (93,101,103). 

Regarding the role of lncRNAs in gene expression 
regulation, they can be classified as: (I) scaffold lncRNAs 
that recruit multiple partners in order to form chromatin 
modifying complex (104); (II) guide lncRNAs that sequester 
ribonucleoprotein complexes and direct them to target 
genes (101,105); (III) elncRNs that are transcribed from 
enhancer elements and link the enhancer to the promoter to 
increase transcription (106,107); (IV) signal lncRNAs that 
are transcribed in response to different developmental and 
environmental stimuli (101,104); (V) decoy lncRNAs that can 
tittering away transcription factors, induce RNA degradation, 
functioning as sponges and tittering the miRNAs’ 
concentrations and compete with them for binding to target 
mRNA (108,109). Although in some cases it has been shown 
that lncRNAs-protein interactions are sequence independent 
and even exon deletions or sequence replacement does not 
affect neighboring genes’ expression (110-113), it has been 
demonstrated that some single nucleotide polymorphisms 
(SNPs) within lncRNAs or their promoters contribute to 
some disease- associated pathologies (114).

MicroRNAs in acute kidney transplant rejection

Increasing number of studies suggest that miRNAs have 
critical regulatory roles in innate and adaptive immune 
responses and thus in organ status after transplantation. 
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The relat ionship between hematopoietic  cel ls ’ 
differentiation stages and miRNA profiling status was first 
described by Monticelli et al. in the murine hematopoietic 
system in which increased levels of miR-142-3p in naïve 
T cells compared with differentiated Th1 and Th2 cells 
has been reported (115). According to genomic studies the 
molecular injury in chronic allograft nephropathy (CAN) 
and AR resembles. This likely reflects the threshold effect 
for AR at which the same molecular injuries occurs at 
higher and sever levels in AR compared with CAN (17). 
Surprisingly, increased levels of forkhead box protein 
3 (FOXP3) transcription factor’s mRNA was observed 
in urine samples of patients with AR (90% sensitivity 
and 73% specificity) compared with patients with 
CAN and recipients with normal biopsy results (116). 
This finding was confirmed by other studies (117,118). 
FOXP3 is known as miR-142-3p transcription repression 
mediator and it is expected to decrease the expression 
level of it (119). Further studies revealed that normally 
the expression of two opposite arms of miR-142 in 
hematopoietic cell lineage are different and the expression 
level of miR-142-3p (3’ arm of miR-142) is approximately 
10 times more than that of miR-142-5p (5’ arm of  
miR-142) (120). In 2011, performing an investigation of 
miRNA, mRNA and protein expression on activated T 
lymphocytes, Grigoryev et al. introduced the concept of 
miR-142-3p being associated with tolerant kidney allograft 
recipients while decreased levels of miR-155 and miR-221 
are associated with T-cell proliferation (121). The results 
of subsequent studies revealed that miR-142-3p, miR-204 
and miR-211 can be used to distinguish patients with CAN 
from those without (122-124). Also the overexpression of 
miR-142-3p in PBMCs of operationally tolerant kidney 
transplant recipients has been shown (125). Soltaninejad 
et al. identified 4 miRNAs (miR-142-3p, miR-142-5p, 
miR-155 and miR-223) that were abundantly expressed in  
17 biopsy samples as well as two miRNAs (miR-142-3p and 
miR-223) in their paired PBMC samples of patients with 
confirmed TMAR compared with patients with stable graft 
function (SGF) (126). Previously Anglicheau et al. found 
that miR-142-5p, miR-155, and miR-223 that are highly 
expressed in AR biopsies are overexpressed in normal 
PBMCs too (127). Liu and Xu have found that miR-223 
was increased 2 folds in PBMCs of patients with AR within 
1 month after kidney transplantation (128).

A recent study conducted by Domenico et al., showed that 
miR-142-3p is significantly increases in peripheral blood 
and urine of kidney transplant recipients with acute tubular 

necrosis (ATN) but not in those with SGF and AR (129).  
The authors supported another study’s findings and 
suggested that this provide strong evidence for necrosis 
processes and inflammatory injuries such as interstitial 
fibrosis and tubular atrophy (IF/TA) (124,129). MiR-142-
5p overexpression in non-invasive samples was found in 
patients with chronic antibody mediated rejection but not 
in those with AR or SGF (130).

In a study using sera from 42 kidney transplant recipients 
the association of circulating miR-21 levels with renal 
fibrosis severity was assessed. The fibrosis grades were 
evaluated by allograft biopsy result interpretations and 
authors concluded that levels of circulating miR-21 are 
significantly increased in cases with sever IF/TA but not in 
other renal histological lesions (131).

In one study the circulating miRNAs in urinary samples 
of patients with AR, patients before and after rejection, 
patients with urinary tract infection (UTI) and patients 
with SGF were performed. Deregulation of miR-10a, miR-
10b and miR-210 in urine samples of patients with AR, 
from which miR-10b and miR-210 were down-regulated 
while miR-10a was up-regulated in Acute TCMR patients 
compared with those with SGF were determined. It was 
also shown that decreased levels of miR-210 were associated 
with higher glomerular filtration rate (GFR) during 
first year after transplantation. Among aforementioned 
deregulated miRNAs, it was determined that only 
expression level of miR-210 was corrected after successful 
rejection treatment (132). Conversely Betts et al. examined 
the sera of patients with AR and found that miR-223 and 
miR-10a to be significantly down-regulated during AR 
compared with patients with SGF and without a history of 
rejection (133). Liu et al. performed miRNA next generation 
sequencing in normal and acutely rejected kidney allografts. 
The main finding was that miR-10b was significantly 
down-regulated in AR inducing glomerular endothelial cell 
apoptosis by derepressing of its pro-apoptotic target, B-cell 
lymphoma2-like-11protein (BCL2L11), and releasing of 
pro-inflammatory cytokines and MQs chemotaxis. All of 
these are key features of AR and the authors suggested that 
restoring of miR-10b expression in glomerular endothelial 
cells can be used as therapeutic approach in order to 
ameliorate acute kidney allograft loss (134). 

Lv et al. showed that miR-29-c in urinary exosomes 
correlated with GFR and could be used for distinguishing 
mild from moderate to severe fibrosis with 68.8% sensitivity 
and 81.3% specificity (135). 

Sui et al. integrated array-based proteomics and 
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microarray-based genomics data to find transcription 
factors (TF), miRNAs and ncRNAs of biopsy specimens 
from patients with AR in order to further understand 
the mechanism underlying AR. They reported the 
expression of 5 TFs (AP-1, AP-4, STATX, c-Myc and P53),  
12 miRNAs and 32 ncRNAs with critical roles in molecular 
signaling pathways related to AR. For example, down-
regulation of has-miR-324-3p and up-regulation of has-
miR-381 had been correlated with poor prognosis or 
key proteins with regulatory effects on apoptosis, innate 
immunity, inflammation and hematopoietic differentiation 
are repressed by miR-125b at translation level (136). Also 
they investigated the expression levels of miR-181a, miR-
483-5p and miR-557 in sera samples of 15 kidney transplant 
recipients before transplantation, on the first, third and 
seventh days after transplantation by RT-PCR. Based on 
receiver operating characteristic (ROC) analysis results, 
they concluded that these three miRNAs could serve 
as predictive biomarkers for rejection (137). This same 
research group in a study conducted in 2008, have indicated 
an AR profile of 20 miRNAs in biopsy samples of 3 patients 
with AR and compared them with 3 patients with SGF, out 
of which 2 (miR-320 and miR-324-3p) were confirmed by 
QRT-PCR (118).

A research group led by Wilflingseder, has also done 
a number of studies regarding miRNAs expression 
patterns according to rejection type or injury in renal 
transplantation. In 2013, they reported miRNA signatures 
that discriminate acute TCMR (up-regulation: miR-
150, miR-155, miR-663 and miR-638; down-regulation:  
18 miRNAs; miR-125b-2, miR-99b, miR-30-c-2 and  
miR-424), acute ABMR (up-regulation: miR-146-5p, 
miR-1228, let-7i, miR-21, miR-182, miR-155, miR-125a 
and miR-146b) and delayed graft function (DGF) (138). 
Following year, they showed a molecular acute kidney 
injury (AKI) signature consisting 20 mRNAs and 2 miRNAs 
(miR-182-5p and miR-21-3p) from which miR-182-5p was 
identified as biomarker in addressing AKI (139).

Tao et al., found 6 deregulated miRNAs in serum samples 
of patients with AR compared with kidney recipients with 
SGF and patients with DGF. Out of 6, up-regulation of 
only 2 (miR-99a and miR-100) were confirmed by QRT-
PCR in AR patients and according to ROC analysis, only 
miR-99a had a potent diagnostic value for discriminating 
patients with AR from those with SGF or with DGF. Thus 
they concluded that serum level of miR-99a could serve as a 
biomarker for detection of AR (140).

Rejection associated events such as production of cytokines 

and growth factors can result in microvascular endothelial 
cells damage and promotion of dysregulated angiogenesis 
within the graft (141). Bijkerk et al. selected 48 miRNAs to 
assess the AR and microvascular injury associated circulating 
miRNAs in plasma samples of 13 patient with AR on the first, 
sixth and twelve months after AR and 25 transplant recipients 
with SGF using QRT-PCR. The investigators identified  
8 miRNAs (up: miR-17, miR-140-3p, miR-130b, miR-122 
and miR-192; down: miR-135a, miR-199a-3p, miR-15a) 
as being able to discriminate AR and SGF. Furthermore, 
the authors showed miR-130b, miR-199a and miR-192 
were associated with markers of vascular injury. MiR-140-
3p, miR-130b, miR-122 and miR-192 were normalized 
within 1 year after AR (142). Cheng et al. investigated the 
role of miRNA-181b in peripheral blood of renal allograft 
recipients whit acute vascular rejection (n=14) and non-
acute vascular rejection (n=20) using QRT-PCR. They 
found that the expression level of peripheral blood miR-
181b in patients with acute vascular rejection was remarkably 
lower at different time points of 1, 2, 3 and 4 weeks post 
transplantation compared with that of the non-acute vascular 
rejection. Furthermore the authors suggested that miR-181b 
might be one of the markers for monitoring of acute vascular 
rejection after kidney transplantation (143).

Recently in a study Matz et al. from France aimed to 
identify miRNAs signature in ABMR and IF/TA using 
high-throughput sequencing and validated results in 
53 patients with SGF, 17 with UTI, 19 with borderline 
rejection (BL), 40 with TCMR, 22 with ABMR and 30 with 
IF/TA by QRT-PCR. miR-142, miR-223-3p, miR-424-3p 
and miR-145-5p could discriminate acute TCMR and acute 
ABMR only from SGF, but not from others. Also miR-145-
5p was identified as IF/TA specific biomarker from SGF 
only and others combined with highly diagnostic accuracies 
(AUC =0.891 and AUC =0.835 respectively) (144). 

Finally, Misra et al. from India investigated the impact 
of 4 SNPs namely MIR146A C>G (rs2910164), MIR149 
T>C (rs2292832), MIR196A2 T>C (rs11614913), and 
MIR499A A>G (rs3746444) among patients with end-stage 
renal disease (ESRD) and those with AR. They observed an 
increased risk of approximately two-fold in ESRD and three-
fold in AR for mutant genotypes of rs2910164, rs11614913, 
and rs3746444. They concluded that these SNPs might have 
roles in susceptibility to ESRD and AR (145).

lncRNAs in acute kidney transplant rejection

As mentioned before, since TFs, miRNAs and lncRNAs are 
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the most important gene regulators, Sui et al. for the first 
time investigated and constructed the regulation network 
of the target genes by 5 TFs, 12 miRNAs and 32 lncRNAs 
which were differentially expressed in biopsy specimens 
from patients with AR integrating high throughput 
screening data and different algorithms’ data (136). 

Using lncRNAs microarray Chen et al. studied the 
differentially expressed lncRNAs in biopsy tissue samples of 
3 patients with AR and compared them with those with SGF. 
Then based on their expression fold changes five lncRNAs 
(uc001fty, uc003wbj, AK129917, uc010ftb and AF113674) 
have been chosen to be validated by QRT-PCR (146).  
Taking the notion that depending on their genomic 
location lncRNAs have divers regulatory functions such as 
negatively/positively regulating the target gene, protein-
coding mRNA stabilization, regulation of alternative 
splicing of mRNAs and etc. (147); they have done KEGG 
pathway enrichment analysis for these five lncRNAs to 
gain new insights into the pathogenesis of AR. The authors 
concluded that AR is associated with immune activation and 
inflammation (146).

Lorenzen et al. analyzed the lncRNAs expression profiles 
in tissue biopsies and urine of kidney transplant recipients 
with acute TCMR and identified three intergenic lncRNAs: 
LNC-MYH13-3:1, RP11-395P13.3-001 and RP11-
354P17.15-001. They demonstrated that urinary RP11-
354P17.15-001 can predict AR and loss of graft function 
at 1 year post transplantation. Also they showed that 
exposure of cultured tubular epithelial cells to the IL-6 as 
an inflammatory cytokine increased the expression levels of 
all lncRNAs, however, in the cell culture supernatant the 
expression levels of only RP11-395P13.3-001 and RP11-
354P17.15-001were increased. The authors suggested 
that these lncRNAs might be secreted under inflammatory 
conditions (148). 

In a study on a cohort of 72 patients with allograft 
rejection and 36 patients with SGF, lncRNA activated by 
transforming growth factor β (TGF-β) (lncRNA-ATB) was 
found to be significantly increased in biopsies of patients 
with AR compared with those with SGF. The authors stated 
that lncRNA-ATB could serve as a novel biomarker for AR, 
nephrotoxicity of immunosuppressive drugs and predict loss 
of graft function (149). 

Evaluation of lncRNAs profile in peripheral blood of 
kidney transplant recipients was done by Ge et al. for the 
first time in cohorts of 150 pediatric and adult recipients. 
Among differentially expressed lncRNAs in pediatric and 
adult patients, 32 lncRNAs could distinguish both groups 

with AR from those without AR. Also, they showed that the 
two most significant lncRNAs, AF264622 and AB209021 
had remarkable diagnostic values (AUC =0.829 and 
AUC =0.889, respectively) in both recipients groups for 
discriminating AR episodes from SGF (150). 

N a g a r a j a h  e t  a l .  m e a s u r e d  l n c R N A ,  β - 1 , 
4-mannosylglycoprotein 4-β-N-acetylglucosaminyltransferase 
antisense RNA1 (MGAT3-AS1) levels in mononuclear 
cells using QRT-PCR and showed that MGAT3-AS1 
decreased significantly at first postoperative day after kidney 
transplantation. In addition, they observed an association 
between decreased level of MGAT3-AS1 and decreasing of 
plasma creatinine level within first day post transplantation and 
concluded that lncRNAs-MGAT3-AS1 assessment could be 
used for determining immediate allograft function (151). 

Huang et al. showed that the serum concentration 
of interferon-induced protein 10 (IP-10) in acute 
TCMR episode was significantly higher compared with 
patients with SGF (152). There are numerous reports 
of fundamental role of IP-10 and its receptor CXCR3 
in amplifying intragraft  inflammation, enhancing 
inflammatory reactions via stimulating resident and 
alloreactive memory T-cells during rejection and ischemia 
induced tubular damage in human recipients as well as 
mouse and rat transplant models (152-157). On the other 
hand, increased levels of NF-κB resulted by reactive 
oxygen species and renal inflammation were seen (157,158). 
It was also documented that Arid2-IR lncRNA functions to 
promote NF-κB-dependent renal inflammatory cytokine 
expression (159). In a recent study, the regulatory effect of 
chemokine IP-10 on expression of Psoriasis susceptibility 
related RNA gene induced by stress (PRINS) lncRNAs 
was investigated (157). The increased levels of IP-10, 
NF-κB as well as up-regulation of PRINS lncRNAs were 
detected. Furthermore expression level of PRINS lncRNA 
was decreased following IP-10 antibody treatment was 
reported in the same study. The authors suggested that 
antibody treatment reduced T-cell recruitment and 
concluded that this might become indicative for PRINS 
lncRNA involvement in AR (157).

Conclusions

The success of organ transplantation as a preferred therapy 
is hindered by eventual failure of grafts mainly due to 
immune mediated rejection responses. Growing variety 
of human ncRNAs are emerged and their discoveries 
has opened a new window to biomedical research and 
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toward pathogenesis of AR after transplantation. In AR 
the pathologic process can be detectable at molecular level 
before histological or clinical manifestations occur. Several 
investigations were done for profiling of miRNAs in biopsy, 
serum, plasma and urine samples of transplant recipients 
with AR to develop insights into pathways responsible for 
the rejection process and to find novel targets for therapy. 
However, till now involvement of only minority of lncRNAs 
in the pathogenesis of AR has been documented and other 
kinds of ncRNAs have not been identified yet in this aspect.

In this review list of miRNAs and lncRNAs have been 
linked to AR following kidney transplantation was presented 
and the usefulness of them as non-invasive biomarkers 
in early detection of AR was examined. The existence of 
a highly regulated interplay between mRNA/miRNAs/
lncRNAs in allograft rejection mentioned in above studies 
lead to the notion that these ncRNAs might promote the 
identification of feasible biomarkers for monitoring the 
kidney allograft function, diagnosis, treatment and even 
preventing of AR occurrence. These could be achieved 
by further investigation of association between AR and 
ncRNAs to illuminate the mechanisms underlying the organ 
rejection.
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