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Introduction

Cardiac remodeling is defined as an alteration of cardiac 
cells in response to mechanical, chemical, electrical signals 
and stress or pathological stimuli that culminate into cardiac 
dysfunction. The stress stimuli such as inflammation, 
oxidative damage, myocardial infarction (MI), pressure or 
volume overload can trigger cardiac remodeling leading 
to cardiac arrythmia and heart failure (HF). Cardiac 
remodeling is a complex process characterized by structural 
alteration and phenotypical changes including hypertrophy, 
apoptosis, necrosis, fibrosis, ventricular dilatation, vascular 
dysfunction resulting in HF (1-3). Reversing cardiac 
remodeling is, therefore, a key strategy for the treatment 
of HF. Recent work from multiple laboratories have 
highlighted the role of non-coding RNAs (ncRNAs) in 
cardiac remodeling and will be described in this review.

The ncRNAs are a class of RNA that does not encode for 
a protein and is previously thought as “junk” molecule. In 
fact, in humans, approximately 98% of the genome consists 

of ncDNA meaning ~2% of DNA sequences corresponds 
to protein coding exons with any functional relevance  
(4-6). Researchers have reported over the past two decades 
the importance of RNA research primarily dominated 
by microRNA (miRNA), a particular class of ncRNA. 
However, several other classes have been identified over the 
time and, they include long non-coding RNAs (lncRNAs), 
small  nucleolar RNAs (snoRNAs),  circular RNAs 
(circRNAs), piwi-interacting RNAs (piRNAs), guide RNAS 
(gRNAs), small nuclear RNAs (snRNAs) (7). The ncRNAs 
regulate cellular or biological functions like proliferation, 
differentiation, inflammation, cell death and metabolism. In 
this review, we focus on the role of miRNA, lncRNA and 
circRNA and, their therapeutic use in cardiac remodeling.

miRNA in cardiac remodeling 

miRNAs are single-stranded endogenous ncRNA of 19–23 
nucleotides (nt), evolutionary conserved across different 
species and, modulate gene expression by targeting specific 
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gene(s) at the posttranscriptional level in a tissue-specific 
fashion. miRNAs bind mostly to the 3'-untranslated 
region (UTR) of target genes and inhibit gene expression 
translationally and/or by destabilizing the target mRNA (8). 
Although miRNAs were discovered first in C. elegans in 
1993 (9) but the importance of their function was much 
later recognized in 2000 and research gained momentum 
thereafter. 

The single stranded small miRNA is formed from its 
longer transcript called primary miRNAs (pri-miRNA) 
which is more than 1 kb in length and contain hairpin/stem 
loop (10). The pri-miRNA is further processed to precursor 
miRNAs (pre-miRNAs), 70-nt stem loop oligonucleotides, 
in the nucleus by the Drosha/DGCR8 complex (a type 
III RNase complex), then exported to the cytoplasm 
through the nuclear pore with the help of a protein called 
Exportin 5 and Ran-GTPase. Here, the pre-miRNAs are 
subsequently processed by Dicer/TRBP complex, to form 
mature double-stranded miRNAs (11,12). During the 
maturation process, the pre-miRNAs lose their terminal 
base pairs and their hairpin structure. The single-stranded 
form is a fully active mature miRNA; this is achieved by 
dissociation of the complex and association with Argonaute 
(Ago) which binds with RNA-induced silencing complexes 
(RISCs) and specifically binding with its target genes  
(11-13). Mature miRNAs can be released to the extracellular 
milieu within vesicles (i.e., exosomes) and communicate via 
miRNA-mediated cellular function. Finally, miRNA binds 
to the 3'-UTR of the mRNA and promote posttranslational 
degradation or downregulation of target gene.

miRNA in cardiac development

The first evidence of miRNA in the setting heart 
development was demonstrated in a mouse model of 
cardiac-specific deletion of DICER that led to embryonic 
lethality within the first four days after birth due to 
dilated cardiomyopathy (14). In addition, vascular smooth 
muscle-specific disruption of Dicer exhibited embryonic 
lethality at embryonic day 16 to 17 with massive internal 
hemorrhage and eventually led to dilated and thin-walled 
blood vessels due to impaired cellular proliferation. The 
blood vessels derived from these mice showed contractile 
dysfunction due to loss of actin fibers. Interestingly, the 
phenomenon is partly rescued by overexpression of miR-
145 or myocardin (15). Moreover, several congenital 
heart diseases like small ventricular septal defects (VSDs), 

tetralogy of Fallot (TOF) and hypoplastic left heart 
syndrome (HLHS) are also associated with miRNA 
dysregulation. 

miR-1 was the first miRNA that demonstrated a crucial 
role in cardiac development (16). Mice with increased 
miR-1 expression in the developing heart showed decreased 
cardiomyocyte proliferation and was mediated by inhibition 
of Hand2, a critical cardiomyocyte transcription factor 
(16,17). In contrast, depletion of miR-1-2 in mice resulted 
in embryonic lethality due to VSDs (18). Moreover, miR-1-1 
was shown to be significantly dysregulated in patients with 
VSDs (19). In addition to the miR-1 family, several other 
miRNAs are reported to be involved in VSDs. Loss of 
both miR-17-92 and miR-106b-25 developed exacerbated 
cardiac malfunction including ventricular wall thinning 
and VSDs (20). miR-195, a member of the miR-15 family 
is involved in VSD. Cardiac-specific overexpression of miR-195 
is associated with ventricular hypoplasia and VSDs in hearts 
on postnatal day P1 to P3 (21). 

TOF, another congenital heart defect whose cause 
is primarily unknown. TOF is more often seen in 
children with Down syndrome or DiGeorge syndrome. 
The features include a hole in the heart, an obstruction 
between heart and lungs, pulmonary stenosis and right 
ventricular hypertrophy. The first study on ncRNA in TOF 
was reported by O’Brien et al. (22). They reported that 
sixty-one miRNAs and 135 snoRNAs were significantly 
dysregulated in children with TOF compared to healthy 
infants (22). miR-1 expression was significantly reduced 
but miR-421 was significantly upregulated. The study is 
interesting as it indicates that the alteration of miRNA/
snoRNAs may influence differential splicing of a transcript 
resulting in faulty translation of a protein leading to the 
development of heart defect. A follow-up study by the same 
group showed the role of miR-421 in TOF targeted to 
SOX4, a key regulator in Notch pathway critical for cardiac 
outflow track (23). Another miRNA, miR-940 whose 
reduction may influence the development of track flow 
by targeting JARIAD1 (24). Connexin43, a gap-junction 
protein, essential for the formation of heart development 
and structures, was upregulated in TOF subjects (25). It is 
reported that miR-1 and miR-206 are significantly reduced 
in TOF patients and connexin 43 is a potential target  
gene (26). Another microarray study showed up-regulation 
of miR-424/424* and suppression of HAS1and NF1 in right 
ventricular outflow tract biopsies of TOF patients indicated 
its’ role in TOF (27).
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miRNA in cardiac hypertrophy

Cardiac hypertrophy is defined by an increase in the size 
of cardiomyocytes, without increase in cell numbers. 
At the molecular level, cardiac hypertrophy exhibits an 
increased expression of certain fetal-type genes like ANF 
and β-MHC (28). Role of miRNA in cardiac hypertrophy 
was first documented by von Rooij et al. using cardiac-
specific miR-208 transgenic and miR-208 knock-out  
mice (29). Knockout of miR-208 confers protection 
during aortic banding by targeting thyroid hormone 
receptor associated protein 1 (THRAP1). The first 
identified negative regulator of cardiac hypertrophy is  
miR-133 (30). Overexpression of miR-133 showed 
inhibi t ion of  pressure  over load- induced cardiac 
hypertrophy  target ing  RhoA,  Cdc42andNel f -A/
WHSC2 (30). A subsequent article showed an anti-
hypertrophic effect of miR-1 (31). Because miR-1 is 
an abundant miRNA in the myocardium, studies were 
conducted to test its efficacy at therapeutic stand-point. 
The study demonstrated that miR-1 prevents cardiac 
hypertrophy by suppressing heart and neural crest 
derivatives expressed 2 (Hand2), and by inhibiting the 
activity of insulin-like growth factor (IGF), twinfilin 1 
or connexin 43 (32-35). The miR-378, another anti-
hypertrophic miRNA, regulated cardiac hypertrophy by 
repression of Mapk1, Igf1r, Grb2, and Ras 1 (36). Over 
the period time, an overwhelming number of articles are 
published demonstrating pro- or anti-hypertrophy effect 
of miRNAs including miR-9, miR-21, miR-23a, miR-
455, miR-199, etc. (37-41). Among them, miR-21 is very 
thoroughly studied miRNA over more than 15 years in 
many biological aspects including cardiac remodeling. 
Interestingly, the role of miR-21 in cardiac hypertrophy 
cautioned us about the use of anti-miRNAs as therapeutic. 
The small variation of 8 vs.  21 nt appears to have 
oligonucleotide chemistry preferences (42,43). Using miR-
21 deficient mice and 8nt anti-miR-21 oligonucleotides, 
Patrick et al. demonstrated no development of cardiac 
hypertrophy and fibrosis when miR-21 null mice exposed 
to pressure overload and concluded that miR-21 has no 
role in cardiac hypertrophy (42). In contrast, Thum et al. 
showed that inhibition of miR-21 with 22- and 15-nt miR-
21 oligonucleotides effectively inhibits myocardial and 
pulmonary fibrosis (43). Both studies were meticulously 
designed and elegantly executed but, questions remain 
about the ambiguity. Possible explanation may be due to 

off-target effect as two different sizes of nucleotides were 
used or a genetic deletion has influence in compensation 
effect. 

miRNA in cardiac fibrosis (CF)

CF is a proliferative remodeling disease and is a highly 
debilitating process that eventually leads to organ 
dysfunction. CF occurs as an imbalance of extracellular 
matrix (ECM) proteins turnover and the underlying 
molecular and morphological correlate of CF is disruption 
of myocardial structure via uncontrolled deposition of ECM 
proteins which include collagens, matrix metalloproteinases 
(MMP), etc. in the interstitium and perivascular region of 
the heart (44-46). As a result, myocardial stiffness occurs 
which alter the mechanics of the heart and impair the 
function. The role of miRNAs in CF is well-documented. 
Apparently, the initial studies demonstrated by Thum 
et al. (43) indicated the role of miR-21 in CF targeting 
extracellular regulated kinase inhibitor sprouty homolog 
1 (Spry1) (43). But, an elegant study led by Eric Olson’s 
group showed the expression of miR-29 family members 
(miR-29a, miR-29b and miR-29c) negatively correlated 
with ECM production and fibrosis in MI model (47). 
The miR-29 family is also referred to as “fibro” miRs 
because of its ability to promote tissue fibrogenesis (48). 
The miR-29 family is consistently downregulated in many 
organ fibrosis like renal, lungs and liver and their reduction 
correlate with upregulation of ECM-related genes leading 
to activating fibrogenic or fibrosis signaling pathway  
(49-52). In addition to miR-29 family, several other 
miRNAs have been reported in CF targeting various 
fibrotic genes and TGF-β signaling in fibrogenesis. Our 
group has previously reported the role of miR-26a in 
CF targeting connective tissue growth factor (CTGF) 
and collagen I, respectively (53). Moreover, we showed 
a transcription factor (NF-κB)-mediated modulation 
of miR-26a both in vitro and in vivo models. Another 
downregulated miRNA in MI-induced CF is miR-24 (54). 
Lentivirus-mediated delivery of miR-24 precursors reduced 
fibrosis and decreased cardiac fibroblast differentiation 
by targeting furin (54). The role of miR-133a and miR-
30 in fibrosis has been determined and, this established 
an important function of these miRNAs in CF (55-57). A 
critical event in CF is the transformation of CF to an active 
CF phenotype or myofibroblasts (58,59). Myofibroblasts 
is the specialized CF formed by irreversible acquisition 
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of expression of alpha-smooth muscle actin (α-SMA) 
(59,60) and inhibition of myofibroblasts may be effective to 
prevent CF. Recent studies including ours indicate a critical 
link between miRNA dysregulation and myofibroblast 
activation (61,62). Both studies used locked nucleic acid 
(LNA) technology to specifically inhibit miRNAs, miR-
125b and miR-130a, in vivo and rescued angiotensin II-
induced CF (61,62). MiR-433, another fibroblast-enriched 
miRNA identified through MI-induced miRNA array 
analysis showed consistent upregulation in MI and dilated 
cardiomyopathy models (63). Over expression of miR-
433 in cardiac fibroblast elicits fibroblast differentiation 
and myofibroblast activation targeting AZIN1 and JNK1. 
Reduction of both the molecules activating TGF-β1 and 
ERK/p38 pathway respectively, activating Smad3 leading to 
CF (63). Adenovirus-mediated (AAAV-9) in vivo inhibition 
of miR-433 showed reduction in CF and improved cardiac 
function following MI (63). These studies may indicate a 
future use of these miRNAs for the treatment of human 
cardiac fibrosis.

LncRNAs in cardiac remodeling 

Long noncoding RNAs (lncRNAs) are autonomously 
transcribed RNA (~200 nt) with poor primary sequence 
conservation. However, the promoter sequence of lncRNAs 
in many cases are found to be conserved indicating there 
may be a common regulatory pattern. Expression profiles 
of lncRNAs indicate that they are cell type, tissue, and 
developmental stage specific although less abundant 
(64,65). Compared to mRNAs, lncRNAs are found to be 
enriched in the nucleus than the cytoplasm (66). They are 
transcribed by RNA pol II, and nascent RNA transcripts 
undergo 5' capping, polyadenylation and chemical base 
modification (67). Mass spectrometry-based analysis 
suggest that most of these lncRNAs do not translate into 
protein although ribosomes are attached to the lncRNAs. 
LncRNAs and mRNAs have a comparable stability (68). 
To date few lncRNAs that are functionally characterized 
are known to increase or suppress transcription activation, 
act as protein or RNA decoys, enforce stable repressive 
chromatin state activity and assist in formation of higher 
order nuclear architecture such as chromatin remodeling 
(69,70) Overexpression, under-expression and mutation of 
lncRNAs have been implicated in numerous diseases (7). In 
this review some of the known lncRNAs that contribute to 
cardiovascular diseases are discussed below.

LncRNAs and ischemic heart disease (IHD)

IHD is one of the most common causes of HF worldwide. 
In case of IHD, cardiomyocytes are lost either through 
necrosis or apoptosis. Therefore, reducing cardiomyocyte 
death may be an efficient way to prevent the progression 
to HF. LncRNA Carl inhibits mitochondrial fission and 
affects cardiomyocyte apoptosis through its interaction 
with miR-539 and PHB2 as demonstrated in a mouse 
model of ischemia/reperfusion (I/R) injury (71). Another 
lncRNA APF regulates autophagic cell death along 
with the involvement of miR-188-3p and ATG7 in the  
heart (72). NRF lncRNAs act as sponges of miR-873 and 
miR-873 in turn suppresses RIPK-1/RIPK-3, a known 
necrosis regulator thereby reducing myocardial infarct 
damage. This study illustrates that NRF and miR-873 are 
involved in the cardiomyocyte apoptosis (73). These above-
mentioned lncRNAs identified in mouse models provide 
a new therapeutic target to reduce cardiac ischemic injury 
which was previously unknown. An initial study reported 
that following MI, 5 lncRNAs have been shown to be 
increased in the plasma in humans (74). These circulating 
levels of the lncRNAs can act as a predictor of MI in 
patients. Further studies involving large number of patients 
are required in the future to understand if these lncRNAs 
can be successfully used as biomarkers. 

LncRNAs and CF 

CF results in excessive ECM accumulation that can 
progress to HF. H19 lncRNA can reduce the proliferation 
of cardiac fibroblasts by inhibiting DUSP5/ERK1/2 and 
plays a key role in the pro-proliferative and profibrotic  
pathway (75). Augmented expression of lncRNA NR024118 
in rat cardiac fibroblasts led to alteration of cell cycle 
inhibitor CdKn1c (76). TGF-β/Smad3 pathway is a known 
regulator of the fibrotic pathway. High throughput RNA 
sequencing from SMAD3 KO mice kidneys reveal 21 novel 
lncRNAs (77) that need further investigation regarding their 
role in CF. LncRNA NFAT has been shown to modulate 
transcription factor NFAT. Experiments performed using 
3T3 fibroblasts when NFAT is knocked down leads to 
different subcellular localization (78). Interestingly, the 
role of maternally expressed gene 3 (Meg3) lncRNA to 
inhibit hepatic stellate cell activation and liver fibrogenesis 
is known but whether it is also important for the process of 
CF is currently unknown. 
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LncRNAs and cardiac hypertrophy 

Cardiac hypertrophy can be due to various pathological 
stimuli and maladaptive hypertrophy can eventually lead 
to HF. Mhrt binds to the Brg1 chromatin remodeling 
protein complex. This complex then prevents binding to 
its genomic DNA targets such as Myh6 and Myh7 thereby 
blocking fetal gene activation (79). The conserved H19 
lncRNA targets CAMKIIδ thereby acting as a negative 
regulator of cardiac hypertrophy (80). miR-675 is a known 
target of H19 lncRNA. This lncRNA also acts as in CF. 
CHRF lncRNA regulates Myd88 via miR-489 (81). Chast 
lncRNA, is a pro-hypertrophic RNA, a GapmeR silencing 
this lncRNA suppresses transverse aortic constriction 
(TAC)-induced pathological cardiac hypertrophy (82). 
Chast lncRNA has been shown to negatively regulate 
pleckstrin homology domain containing protein family 
M member 1 disrupting cardiomyocyte autophagy and 
promoting hypertrophy. ROR lncRNA is a key player in 
the pathogenesis of cardiac hypertrophy. In hypertrophic 
mouse hearts, ROR expression is increased, and on the 
other hand a decrease in ROR expression attenuates cardiac 
hypertrophy. ROR negatively correlates with miR-133 (83). 
The role of lncRNAs in pathological cardiac hypertrophy 
has been studied so far but has not been studied extensively 
in physiological cardiac hypertrophy. 

lncRNAs as biomarkers 

LncRNAs can directly bind to miRNA and indirectly 
interact with mRNAs through competing endogenous 
RNA (ceRNA) interactions. These interactions can be 
predicted by computer algorithms. Based on computer 
algorithms, lncRNAs (SLC26A4-AS1, RP11-344E13.3 and 
MAGI1-IT1) were predicted to be associated with cardiac 
hypertrophy but has not been experimentally verified. 
Malat-1 lncRNA that acts as a ceRNA for miRNA-133, 
an anti-cardiac hypertrophic miRNA (84). Of note, the 
absence of Malat-1 did not affect pressure overload induced 
cardiac remodeling in mice. To investigate the potential of 
lncRNAs to serve as biomarker of cardiovascular diseases, 
Kumarswamy et al. reported a decrease in the mitochondrial 
lncRNA LIPCAR after MI (85). Interestingly the levels 
were found to be upregulated during the later stages 
of the disease. In patients with MI progressing to HF 
plasma LIPCAR levels can be used to independently to 
predict survival (85). Patients suffering from hypertrophic 
obstructive cardiomyopathy (HOCM), the lncRNAs 

uc004cov.4 and uc022bqu.1 were upregulated but not in 
hypertrophic non-obstructive cardiomyopathy (HNCM), 
suggesting their predictive value in distinguishing these 
conditions (86). A study conducted by Greco et al. (87) 
demonstrated that 14 lncRNAs were dysregulated in 
ischemic HF patients. In addition, this study suggests that 
lncRNAs can be used as potential biomarkers for these 
patients in the future. The successful use of lncRNA to 
therapeutically treat HF patients have not been performed 
yet due to several limitations. These include lack of 
sequence conservation among rodent models and humans, 
predominantly nuclear localization of lncRNAs makes it 
harder to target, also lncRNAs regulate various pathways 
and there may be possible off-target effects. 

circRNAs in cardiac remodeling 

Noncoding RNAs constitute 95% of total gene regulation 
in the eukaryotic transcription. Covalently closed circRNAs 
are generated by back-splicing of either exon [exonic circular 
RNA (ecircRNA)], intron [circular intronic RNA (ciRNA)] 
or both to form exonic or intronic circRNAs (ElciRNA) (88). 
CircRNAs are usually catalyzed by spliceosomal machinery 
or group I and group II enzymes. The formation of closed 
loop provides an advantage in preventing degradation by 
RNA exonucleases. It is believed that circRNA expression 
is regulated by other factors and exhibit cell type and tissue 
specific patterns. The size of circRNA varies from 100 nt to 
several kilobases. The function of circRNAs are beginning 
to be elucidated. Few of the functions which are known to 
date include sequestration of miRNAs, proteins, changes in 
transcriptional, splicing and even translational activity.

circRNAs and cardiac hypertrophy 

Evidence that circRNA plays an essential role in initiation 
and development of cardiovascular diseases comes from 
several studies. A previous study demonstrated that 
miR-223, present in myeloid cells and bone marrow is 
a regulator of cardiac hypertrophy and HF (89). Heart-
related circRNA (HRCR) can bind directly to miR-223 and 
act as an inhibitor. In cardiomyocytes, miR-223 is known 
to act as downstream target of ARC (apoptosis repressor 
with CARD domain). Due to binding of circRNA HRCR 
to miR-223 there is an increase in ARC expression (90). 
These studies indicate that overexpression of HRCR could 
attenuate cardiomyocyte hypertrophy as well as HF in vivo. 
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circRNAs and CF 

In two different mouse models, such as diabetic mouse 
myocardium and in Ang II-induced mouse, cardiac 
f ibroblasts  c i rcRNA_000203 was  reported to  be 
upregulated (91). CircRNA_000203 binds to miR-26b-
5p which in turn interact with the 3'-UTRs of CTGF and 
Col1a2. Overexpression of circRNA_000203 also caused 
an increase in expression of fibrosis-associated genes such 
as Col1a2, Col3a1, α-SMA, and CTGF. CircRNA_000203 
could inhibit the anti-fibrotic effect of miR-26b in mouse 
cardiac fibroblasts. Zhou et al. also illustrated that another 
circRNA, namely circRNA_010567, promotes myocardial 
fibrosis by downregulating miR-141 function (92).

circRNAs and MI 

Prolonged myocardial ischemia during MI leads to 
apoptosis. A detailed study on CDR1AS, a circRNA has 
been shown to be upregulated in MI mice with increased 
cardiac infarct size or in cardiomyocytes under hypoxia 
treatment. CDR1AS which is first identified as a miR-7a/
b sponge promotes MI by regulating miR-7a target genes 
such as PARP and SP1 (93). This study indicates the key 
role of Cdr1as/miR-7a axis in MI-induced myocardial 
apoptosis. Quaking gene are known to regulate specific 
set of circRNAs. Quaking gene is also downregulated in 
murine myocardium treated with doxorubicin. Quaking 
gene deletion by using a CRISPR/Cas9 mediated silencing 
increases cardiomyocyte sensitivity however, overexpression 
blocks doxorubicin induced apoptosis (94). Additional 
studies are needed in humans in the future to determine the 
role of other circRNAs in MI. 

circRNAs as biomarkers

Importantly, recent studies on circRNAs suggest that 
they can serve as a non-invasive biomarker for detection 
of different cardiovascular diseases (95). They have 
an advantage because they are stable (lack of exposed 
terminal ends makes them less susceptible to RNases). 
Deep sequencing efforts have led to identification of large 
number of these circRNAs and they are present in whole 
blood, plasma and extracellular vesicles. In addition, the 
fact that circRNA expression is regulated during cardiac 
development and in failing hearts makes them ideal 
candidates to serve as biomarkers.

RNA microarray of circRNAs from peripheral blood 
samples of patients with coronary heart disease (CAD) 

detected increased expression of hsa_circ_0124644 with the 
largest area under the curve (96). Vausort et al. identified 
MI-associated circRNAs (MICRA), in the peripheral blood 
of patients with MI and left ventricular dysfunction which 
can predict left ventricular dysfunction in a few months 
following reperfusion (97). Another study demonstrated 
that circRNA_081881 act as a competitive endogenous 
RNA molecule of miR-549, via regulating PPARγ  
expression (98). Because circRNA_081881 can be detected 
in plasma and therefore circRNA may serve either as a 
biomarker or could be targeted for therapeutics for acute 
MI. High throughput RNA sequencing studies using adult 
human heart tissue allowed identification of 80 circRNAs 
from key cardiac genes including Titin (TTN), a gene with 
complex alternative splicing sites. It has been reported 
that only a small number of these circRNAs contribute to 
dilated cardiomyopathy. RBM20-KO mice lack circRNAs 
from I band of titin (99). 

Collectively, these results indicate that circRNAs 
can serve as a biomarker for diagnosis of cardiovascular 
diseases. However, interpreting these data needs caution 
as circRNA expression can increase/decrease in the tissues 
but not the peripheral blood/plasma fluids, etc. Ongoing 
research on circRNAs also suggest that these RNAs also 
act as potential protein coding genes due to the presence 
of internal ribosome entry site (IRES), appropriate open 
reading frame (ORF). However, there has been no studies 
that has been conducted to suggest that these translatable 
circRNAs play a role in cardiovascular disease. As we gather 
new information about these circRNAs and their targets 
it would interesting to see if they can serve as a reliable 
biomarker for cardiovascular disease in the future. 

miRNA therapeutic application

It is established that an individual miRNA may target 
thousands of different mRNAs; thus, it may be worth to 
develop miRNA-based strategies targeting the gene or 
pathway networks responsible for cardiac remodeling. 
The miRNA mimic and inhibitor are used for therapeutic 
intervention with a modification as gain-of-function or loss-
of-function fashion. The modifications are primarily used 
for in vivo stability, specificity, and high binding affinity 
to the miRNA of interest or target. The modifications 
include 2'-O-methyl (2'-O-Me), 2'-O-methoxyethyl (2'-
MOE), 2'-fluoro (2'-F), or LNA (100,101). Another 
chemical modification applied is phosphodiester (PO) and 
phosphorothioate (PS) linkages between the nucleotides. 
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The bonding may provide stability and easy uptake (102). 
Krutzfeld et al. reported the first miRNA knockdown 
in mammals using cholesterol conjugated, 2'-O-methyl 
modified, so called “antagomiRs”, to inhibit a liver 
specific miRNA, the miR-122 (103). There are some 
disadvantages of using anti-miRs which apparently arises 
from the chemistry itself. PS oligonucleotides, for example, 
can inhibit the tenase complex in the intrinsic clotting  
cascade (104) and activate innate immunity. The LNA-
mediated ant i-miRs apparently  works  better  but 
hepatotoxicity was reported in some cases. Furthermore, 
LNAs are resistant to degradation and have long tissue 
half-life. To date there is only one miRNA drug in clinical 
trials (SPC3649: inhibitor of miR-122, Santaris Pharma, 
Denmark, ClinicalTrials.gov identifier: NCT01200420) 
(101,105). It has completed two phase I trials and are now 
in phase II trial with their miR-122 targeting Miravirsen. 
Treatment of chronic hepatitis C-infected chimpanzees with 
miravirsen led to suppression of HCV without any obvious 
side-effects (106,107). These results are encouraging and 
highlight miravirsen as a potential future replacement 
therapy for patients with chronic HCV infection. Other 
pharma like Miragen Therapeutics is currently testing miR-
155, miR-29b and miR-92 for treatment of blood cancer, 
fibrosis and IHD (108). Regulus Therapeutics is testing 
miR-33a/b at preclinical non-human level (primates) (109). 

Finally, the toxicity studies of chemically-modified 
miRNA inhibitors will be required to establish safety 
parameters for different anti-miR chemistries. Studies 
however suggest the safe use of anti-miR (LNA) technology 
to reduce miRNA expression, but there are many unknown 
situations may exist like the mode of action, degree of 
blocking, long-term effect and the chemistries behind 
them. Importantly, the dosage of anti-miRs are likely in 
the higher range and may not therapeutically applicable. 
An appropriate guideline for therapeutic dosage needs to 
be established to avoid unwarranted side-effects after the 
delivery. 

The application of miRNA mimic is so far very limited 
because of unmodified state and application of high 
doses. The mimic primarily acts as a double stranded 
oligonucleotide comprised of mature miRNA sequence 
(guide strand), as well as a complementary passenger 
strand, that is required for the efficient recognition and 
loading of the guide strand into the RISC. A recent report 
showed that the export of miR-132 via mesenchymal 
stem cells-derived exosomes represents a novel strategy to 
enhance angiogenesis in ischemic diseases (110).

Conclusions

A significant number of differentially regulated miRNAs are 
observed in cardiac remodeling indicating their potential 
role in the development of the cardiac diseases. Our 
understanding of miRNA biology in cardiac remodeling 
is rapidly progressing and, the current literature suggest 
that miRNAs contributed to (adverse) pathological 
remodeling by regulating the critical events like myocyte 
growth, (cardiac) cell fate and ECM remodeling. The most 
fascinating part of miRNA modulation is that it influences 
proteome remodeling which may alter the contractile 
function and mechanics in the heart. Therefore, miRNAs 
are suggested for therapeutic tools and considered as 
promising approach for cardiac remodeling. Treatments 
are currently focused on systemic anti-miRNA delivery 
which made significant progress in alleviating adverse 
cardiac remodeling and showed promise for therapeutic 
intervention in rodent model. However, it raises concerns 
for off-target effects, efficacy and sustainability of anti-
miRNA are the major challenges. Future efforts should be 
aimed at evaluating either cell-type-specific strategies or 
local delivery. Other ncRNAs like lncRNAs and circRNAs 
are more complex than miRNAs. Primarily, they function 
by binding with transcription factors or chromatin 
complex and act as molecular scaffolds to modulate gene 
expression or epigenetic regulation. The role of both 
lncRNAs and circRNAs in cardiac remodeling are still at 
immature phase and more investigation is required to gain 
in-depth mechanism of action. Despite having a multitude 
of obstacles, there is a possibility that ncRNA-based 
therapeutics that have the potential to become important 
for future clinical diagnostics and treatment modality.
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