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When talking about regulatory RNAs, and microRNAs 
in particular, attention should be paid to what types of 
molecules are present in the cell and in what numbers, 
rather than to their sizes. The distinction between small 
and long RNAs is based on RNA isolation protocols and is 
not a reflection of specific biogenesis pathways, regulatory 
mechanisms or biological roles. Conversely, sequence 
and quantity of expressed miRNAs are of paramount 
importance. As many other regulatory non-coding RNAs, 
miRNAs operate by interacting with other RNA molecules, 
typically mRNAs, at the level of the RNA Induced Silencing 
Complex (RISC), whose Argonaute proteins (Ago) act as 
essential catalytic subunits that mediate miRNA:target 
pairing. The miRNA:target interaction is based on a 
limited base-pair complementarity, which involves some 
nucleotides located at the 5′ end of the miRNA (the ‘seed’ 
region) as well as a complementary region usually located 
within the 3′ untranslated region of the target RNA (the 
miRNA responsive element, MRE). As it results into 
mRNA destabilization and protein synthesis inhibition, this 
type of miRNA:target pairing has become known as ‘miRNA 
directed target repression’ (1) (Figure 1A).

For a long time, this mechanism was believed to act 
unidirectionally, with most, if not all, cellular mRNAs being 
vulnerable to degradation by miRNAs. Once loaded into 
Ago, miRNAs are sheltered from the action of intra- and 
extracellular RNAses, thus usually behaving as extremely 
stable molecules with long half-lives (>24 h). When a 
series of separate reports showed that in specific cases, 
such as growth factor stimulation of fibroblasts (11-13) 
and exposure of neurons to light (14), some miRNAs are 

quickly down-regulated even in the absence of cell division, 
an active mechanism of degradation was suggested to exist. 
Indeed, it has now become common knowledge that a 
mechanism acting in the opposite direction to “miRNA 
directed target repression” exists, with some RNA targets 
evading silencing and inducing, instead, degradation of their 
cognate miRNAs. This mechanism is known as ‘target-
directed miRNA degradation’ or TDMD (15) and relies on 
a specific miRNA:target architecture able to dislodge the 
miRNA tail (3′ end) out of the hydrophobic patch of Ago 
(PAZ domain) and expose it to a hydrophilic environment 
where it can be accessed by terminal nucleotidyl transferases 
(TNTases) or exonucleases (called ‘miRNases’) (Figure 1B).  
A typical hallmark of miRNA degradation is, indeed, 
the accumulation of certain miRNA isoforms (isomiRs) 
characterized by 3′ end modifications, such as the addition 
of non-templated nucleotides (tailing, usually A or U) or 
the shortening of the 3′ end (trimming) (11,15).

At first, target-directed miRNA degradation was 
observed in vitro (16) or induced in cells using the same 
synthetic targets commonly used to inhibit miRNA 
functions (‘miRNA sponges’) (Figure 1C) (2-4,15). 
Further clues came from studies on viruses able to repress 
host miRNAs for their own survival and propagation. 
In particular, Joan Steiz’s lab showed that Herpesvirus 
saimiri (HSV) HSUR RNA induces degradation of miR-
27a/b in a sequence-specific and binding-dependent 
manner (5). Other cases of viral RNAs able to induce 
degradation of host miRNAs were documented (Figure 
1C) (6,7) and additional studies on miRNA degradation 
highlighted an intriguing parallelism between miRNA 
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decay dynamics and the expression of targets with extended 
complementarity (11). Finally, confirmation of the 
physiological relevance of TDMD came last year with a 
series of independent studies on endogenous RNAs able to 
trigger degradation of their cognate miRNAs in mammalian 
cells (Figure 1C): (I) Serpine1, shown to trigger miR-
30b/c degradation in mouse (10); (II) libra/Nrep, able to 
degrade miR-29b in zebrafish and mouse, respectively (9);  
and (III) Cyrano, capable of inducing miR-7 decay in 
mouse (8). In each one of these studies, new and important 
aspects of the TDMD mechanism emerged. Nrep and 
Cyrano are almost exclusively expressed in the brain 
(where TDMD is very effective), thus conferring a spatial 
restriction to miRNA expression. Serpine1 is transcribed in 
fibroblasts, where it induces rapid miRNA degradation in 
quiescent cells stimulated by serum (temporal restriction). 
Therefore, TDMD seems to potentially function in every 
tissue although in neuronal cells it might work with higher 

processivity than in non-neuronal cells. Both Nrep and 
Serpine1 target specific members that belong to large 
miRNA families (the miR-27 family has 3 members and the 
miR-30 family 5) and multi-gene transcriptional clusters 
(miR-27b is transcribed with -23b and -24, miR-30b with 
-30d, and miR-30c with -30a, -30d and -30e). Hence, 
TDMD exerts a spatiotemporal control over miRNA 
levels and increases the flexibility of miRNA expression 
by uncoupling co-transcriptional regulation. Importantly, 
TDMD appears to be unrelated to the coding function 
of cellular RNAs. Removal of the MRE from both Nrep 
and Serpine1 abolished miRNA degradation by TDMD, 
but had no major effects on protein or mRNA levels. 
Indeed, both libra (in zebrafish) and Cyrano (in mouse) 
are actually lncRNAs with no reported coding function. 
Therefore, TDMD might be considered a non-coding 
mechanism shared by both coding and non-coding transcripts. 
Endogenous targets involved in TDMD are able to influence 

Figure 1 Schematic diagrams representing different types of miRNA:target interactions (A,B). (A) When canonical targets interact with 
their cognate miRNAs within RISC, target repression by mRNA destabilization and protein synthesis inhibition ensue; (B) targets with 
extended complementarity may instead induce degradation of their cognate miRNAs by TDMD, whose hallmark is the modification of 
the miRNA 3′ end by tailing or trimming. (C) Diagram illustrating different types of target RNAs known to promote miRNA degradation, 
divided into three classes: (I) artificial RNA targets (known as miRNA sponges) (2-4); (II) viral RNAs (5-7); (III) endogenous RNAs, such as 
Cyrano (8), NREP/libra (9), and Serpine1 (10).
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gene expression in trans by interfering with miRNA-mediated 
repression. Disruption of Cyrano induced an increase in miR-
7 target repression in the brain and in the skeletal muscle. 
Loss of the Serpine1:miR-30b/c interaction (MRE knock-
out) increased repression of miR-30 targets, deeply changed 
the expression of genes upon serum stimulation and induced 
cellular phenotypes related to cell cycle and apoptosis. Loss of 
the Nrep:miR-29b interaction generated an in vivo phenotype 
characterized by impaired motor functions in fish and mice, 
similar to the one resulting from the loss of the entire genetic 
locus (Nrep knock-out), thus suggesting a relevant role for 
TDMD in animal behaviour. 

How many endogenous TDMD targets are there? How 
can they be identified? How exactly does TDMD work? 
These are the unsolved questions and future challenges we 
are faced with. Understanding the mechanistic details of 
miRNA degradation and TDMD will not only allow us to 
make new discoveries in the field of fundamental research, 
but it will also open new opportunities for the application of 
miRNA-based therapeutics to human disease.
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