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Introduction

Cardiovascular diseases (CVDs) remain the main cause 
of morbidity and mortality in the Western world, and 
there is need for basic science research to provide insights 
into disease mechanisms. Indeed, obtaining a better 
understanding of the molecular and cellular mechanisms 
driving CVD development and progression is essential to 
identify new biomarkers and novel therapeutic targets in 
order to improve care and prevent the development of life-
threatening complications.

Over the last decade, the advances in high-throughput 
sequencing technology have allowed the opportunity to 
expand our knowledge on the complexity of the human 
transcriptome, showing that the non-coding portion of the 
genome plays a more significant role in human biology than 
previously thought (1). Currently, we know that the most 
of the human genome is not translated into proteins, but 
transcribed into various classes of functional non-coding 
RNAs (ncRNAs) that are powerful regulators of a plethora 
of cellular and disease processes (2).

Based on their size, these molecules are classified 
into small ncRNAs (<200 nucleotides long), including 

microRNAs (miRNAs), and long ncRNAs (lncRNAs), 
exceeding a length >200 nucleotides. lncRNAs can also 
present circular form, called circular RNAs (circRNAs).

Recently, several review articles have been published 
discussing the involvement of three major types of ncRNAs 
(miRNAs, lncRNAs and circRNAs) in cardiovascular 
system, outlining their biogenesis, physiologic actions and 
pathogenic role (3-6). The present review discusses how 
ncRNAs (including miRNAs, lncRNAs and circRNAs) 
are involved in cardiovascular biology and diseases, 
highlighting their potential role as circulating diagnostic, 
and prognostic biomarkers and therapeutic targets. The 
review also addresses future directions in research, covering 
issues still unresolved and the relevant factors limiting their 
widespread use in the clinical practice.

miRNAs in the cardiovascular system

miRNAs are endogenous RNAs of ~22 nucleotides that 
negatively regulate expression of target genes by usually 
binding to the 3’ untranslated region (UTR) of mRNA and 
inhibiting their translation (7,8). They are synthesized as 
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precursors in the nucleus (Figure 1), where they undergo 
maturation with several enzymatic reactions and are 
translocated to the cytoplasm where they exert their 
biological function recruiting specific silencing proteins that 
form the RNA induced silencing complex (RISC) (9,10). It 
has been predicted that, in humans, about 60% of mRNAs 
are targets for miRNAs and one miRNA may target more 
than 100 mRNAs (8).

Specific miRNAs are differently expressed in cardiac 
tissue and vascular cells,  playing a crucial role as 
regulators of cardiovascular biological functions, including 

cardiovascular cell differentiation, growth, proliferation, 
apoptosis, angiogenesis and cell contractility (11).

Consequently,  aberrant expression of  miRNAs 
has been reported in heart suffering of several CVD, 
such as myocardial  infarction (12) and end-stage  
cardiomyopathy (13).

Several miRNAs (miRNA-1, miRNA-133a, miRNA-
208a/b, and miRNA-499) are believed to be cardiac-specific 
molecules and abundantly expressed in the myocardium (14).

In animal models, aberrant expression of cardiac-
specific miRNAs has been associated with the onset and 

Figure 1 Schematic representation of the biogenesis and function of miRNA (A), lncRNA (B) and circRNA (C). (A) MiRNA is transcribed 
from longer precursors (pre-miRNAs) in the nucleus and further processed via specific nucleases to form the RISC complex in the 
cytoplasm. Within this complex, miRNAs regulate mRNA target transcript expression by degradation or translational repression. (B) Upon 
transcription of a lncRNA from its gene location, it can regulate proximal events (cis-acting) or distal events (trans-acting) regulating the 
expression of genes by interacting directly with DNA recruiting chromatin or regulating mRNA degradation and translation. lncRNAs act 
as sponges for other RNA species (miRna sponge) or proteins. (C) Circular RNAs is produced via back splicing and can be formed from 
a single exon or more or contain introns that have been retained between one or more circularized exon. Functions of circRNAs include 
miRNA sponges, gene transcription regulation, and translation.
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progression of cardiac conditions, such as arrhythmias, 
cardiac hypertrophy and fibrosis (15,16). The dysregulation 
of cardiac-specific miRNAs has been also reported in 
cardiac tissue of patients with heart failure and myocardial 
infarction (17,18).

However, other miRNAs (e.g., miRNA-21-5p, miRNA-
126-3p) that are not cardiac-specific or muscle-enriched 
molecules are important players in several cardiovascular 
processes, contributing the onset and progression of  
CVDs (19).

Overall, expression profiling studies in experimental and 
human heart disease have shown that the expression of a 
large number of miRNAs is altered in several cardiovascular 
disorders (3-6), including myocardial infarction (miRNA-1, 
miRNA-20a ,  miRNA-21 ,  miRNA-126 ,  miRNA-155 , 
miRNA-210, miRNA-214), cardiac arrhythmia (miRNA-1, 
miRNA-17-92, miRNA-106b-25, miRNA-133, miRNA-
133a, miRNA-212), cardiac fibrosis (miRNA-21, miRNA-29, 
miRNA133), cardiac hypertrophy (miRNA-21, miRNA-23a, 
miRNA-24, miRNA-199, miRNA-208a) and heart failure 
(miRNA-1, miRNA-21, miRNA-29, miRNA-30, miRNA-195, 
miRNA-210, miRNA-499).

miRNAs are also critical in many key processes linked to 
vascular biology and atherosclerotic development, regulating 
endothelial dysfunction (miRNA-27b, miRNA-130a, 
miRNA-126, miRNA-221 and miRNA-222) and vascular 
smooth muscle cell proliferation and contractile function 
(miRNA-143 and miRNA-145) as well as inflammatory 
macrophage responses (miRNA-33, miRNA-155, miRNA-
146a, miRNA-let7a, miRNA-21, miRNA-223 and miRNA-
125a) (20-23).

Furthermore, a number of other specific miRNAs 
have been implicated in lipid metabolism and cholesterol 
homeostasis including miRNA-33 that is one of the most 
extensively studied miRNAs and it represses multiple genes 
involved in cellular cholesterol trafficking (24,25).

Recently, profiling analyses also reported differential 
expression of miRNAs (miRNA-21, miRNA-26a, miRNA-
30b, miRNA-141, miRNA-125b, miRNA-148a, miRNA-204, 
miRNA-214) in cardiac valve disease, regulating key 
processes underlying disease progression, such as fibrosis, 
calcification, matrix degradation remodeling, and 
inflammation (26-28).

lncRNAs in cardiovascular physiopathology

lncRNAs are a heterogeneous group of RNA transcripts 
with lengths >200 nucleotides that can be classified as sense, 

antisense, intronic, intergenic and divergent lncRNAs 
according to their relative genome position (Figure 1). 
lncRNAs can be broadly classified into those that act in cis, 
influencing proximal events, and those that influence distal 
biological functions throughout the cell in trans (29,30).

Indeed, lncRNAs are involved in numerous and 
different biological events, such as chromatin structure 
changes, transcription and post-transcriptional processing, 
intracellular trafficking, and regulation of enzymatic activity 
(29,30). lncRNAs can also regulate the activity of other 
ncRNAs, specifically miRNAs, by acting as competing 
endogenous RNAs (31).

LncRNAs are less conserved than miRNAs, suggesting a 
species-specific role of these RNA molecules (32). Although 
the dysregulation of lncRNAs has been implicated in various 
human diseases (33), the functional roles and mechanisms 
of most lncRNAs remain, however, elusive (34).

LncRNAs have been reported to predominantly function 
as key regulators of cell fate commitments in embryonic 
and organism development (35). In 2013, a novel lncRNA, 
named Braveheart, was identified in mouse heart and 
demonstrated to be a key regulator of cardiovascular lineage 
and cardiac gene expression during heart development (36). 
Subsequently, an elegant study identified a human-specific 
lncRNA, named Heart Brake LncRNA 1 (HBL LncRNA 1),  
which negatively regulates human cardiomyocyte 
development from pluripotent stem cells (hiPSCs) by 
silencing miRNA-1 activity (37).

To date, the deregulation of lncRNAs has been reported 
in some cardiovascular conditions such as myocardium 
infarction, myocardial fibrosis, cardiac hypertrophy and 
heart failure (38-45).

For instance, lncRNA-Wisp2 super-enhancer-associated 
RNA (lncRNA-wisper) has been found to be a cardiac 
fibroblast-enriched lncRNA that regulates cardiac following 
myocardial infarction in a murine mode (46). Moreover, 
the expression of lncRNA-wisper was also correlated with 
the cardiac fibrosis in heart tissue from human patients 
suffering from aortic stenosis (46).

Myocardial infarction associated transcript (MIAT) was 
originally identified as a non-coding functional RNA able 
to confer risk of myocardial infarction (47). Subsequently, 
through a mouse model of myocardial infarction, it has been 
demonstrated the critical involvement in cardiac fibrosis and 
dysfunction (48), probably by sponging miRNA-150 (49)  
and miRNA-93 (50) expression in cardiomyocytes.

The lncRNAs cardiac hypertrophy-associated transcript 
(CHAST) is increased upon pressure overload-induced 
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HF in mice and is preserved in humans. Interestingly, 
CHAST homolog in humans is significantly up-regulated 
in human embryonic stem cell-derived cardiomyocytes 
upon hypertrophic stimuli and in hypertrophic heart tissue 
from aortic stenosis patients (51). On the contrary, Myheart 
or Mhrt is a cardiac lncRNA, located in the locus of the 
cardiac-specific gene myosin heavy chain 7, which prevents 
cardiomyocyte hypertrophy by sequestering Brg1, a stress-
activated, ATP-dependent chromatin-remodeling factor, 
and, therefore, avoiding the transcription of hypertrophy 
related genes that are induced during stress through a Brg1-
mediated chromatin remodeling mechanism (52).

circRNAs in CVD

circRNAs are a peculiar group of lncRNAs, consisting of 
at least a few hundred nucleotides (53). As schematized in 
Figure 1, circRNAs are generated via back-splicing, a form 
of alternative splicing, and characterized by covalently 
closed loop structures through joining the 3’ and 5’ end 
together by exon or intron circularization (53,54). In the 
past, circRNAs were considered to have no biological 
function (55), but it has been recently demonstrated that 
they are abundant and preserved in mammalian cells and 
have biological functions by regulating gene expression at 
the transcriptional or post-transcriptional level (53,56,57).

circRNAs have the ability to bind to miRNAs and 
consequently regulate miRNA function, acting as  
sponge (58). Moreover, circRNAs have a relatively higher 
biological stability than linear RNA due to their circular 
structure that cannot be recognized or hydrolysed by RNA 
exonuclease (59).

Although several RNA-sequencing analyses have revealed 
that there is a high-abundance of specific cardiac-expressed 
circRNAs in human heart (60,61), much less is known about 
their role in diseased cardiac tissue. Recently, experimental 
studies have begun to delineate the role of circRNAs as 
crucial modulators of miRNA levels in cardiac conditions, 
such as myocardial infarction (62), cardiac fibrosis (63,64) 
and hypertrophy (65).

A circRNA profiling in left ventricle RNA samples with 
hypertrophic and dilated cardiomyopathy and unaffected 
heart tissues found 80 circRNAs expressed from the titin 
(TTN) gene (66). In particular, the authors showed that the 
RNA-binding motif protein 20 (RBM20), an important 
pathogenic gene of dilated cardiomyopathy, regulated the 
biosynthesis of circRNAs from the TTN gene (66).

Recently, a very interesting study identified an 

abundant expression of cardiac circRNAs (circSLC8A1, 
circCACNA1D, circSPHKAP and circALPK2) in heart tissues 
as well as in human induced pluripotent stem cells-derived 
cardiomyocytes, which might be used as biomarkers (67).  
Furthermore,  the expression level  of  c ircSLC8A1 
significantly increased in specimens from patients with 
dilated cardiomyopathy when compared to the healthy 
controls (67).

Altogether, these findings encourage future investigation 
to identify the differential expression circRNAs in different 
disease phenotypes in patients.

Circulating ncRNAs as biomarkers

In addition to the relevance of ncRNAs as regulators in 
the molecular mechanisms of disease, numerous evidence 
suggests their potential use as novel biomarkers for the 
diagnosis and clinical decision making (19,68,69). The 
best-studied circulating ncRNAs group is represented 
by circulating miRNAs, that are released into circulation 
usually packaged in different micro-particles (exosomes, 
micro-vesicles and apoptotic bodies) or associated with 
lipoprotein complexes or RNA-binding proteins, which 
provide stability and resistance to plasma RNase digestion 
and enable miRNA transfer from one cell to another (70).

Numerous studies have explored the potential of 
miRNAs as clinical biomarkers in CVD in the diagnosis and 
prognosis of CVDs (19,68-71).

For instance, a recurrent group of cardiomyocyte-
enriched miRNAs (miRNA-1, miRNA-133, miRNA-208a/b  
and miRNA-499) and non-cardiac miRNAs (miRNA-21, 
miRNA-26a, miRNA-27a, miRNA-30c/d, miRNA-106a-5p,  
miRNA-122, miRNA-126, miRNA-134, miRNA-145, 
miRNA-146, miRNA-150, miRNA-197, miRNA-199, 
miRNA-223, miRNA-328, miRNA-423-5p, miRNA-486) 
in plasma or serum have been suggested as biomarkers of 
coronary artery disease and myocardial infarction as well 
as correlated with the diagnosis and the prognosis of heart 
failure (19,68-71).

Other circulating miRNAs (miRNA-1, miRNA-21, 
miRNA-133a/b, miRNA-146a, miRNA-150, miRNA-328) 
have been associated with cardiac arrhythmia and atrial 
fibrillation (19,69).

Other studies identified several circulating (miRNA-1, 
miRNA-21 ,  miRNA-22 ,  miRNA-133 ,  miRNA-210 , 
miRNA-382) as potential biomarkers for valvular heart 
disease, especially aortic stenosis, in combination with 
clinical and imaging parameters (26,72,73).



Non-coding RNA Investigation, 2018 Page 5 of 10

© Non-coding RNA Investigation. All rights reserved. Non-coding RNA Investig 2018;2:63ncri.amegroups.com

Despite these promising findings on circulating miRNAs 
as novel CVD biomarkers, great uncertainty remains 
on their diagnostic feasibility and clinical use due to 
inconsistent results among studies, attributable, at least in 
part; to a number of technical limitations for their measure 
in biological fluids (71).

In addition to miRNAs, lncRNAs can be released into 
the extracellular space and subsequently be detected in body 
fluids, such as serum and plasma (19,69).

Accordingly, some circulating lncRNAs were recently 
described as potential biomarkers for coronary artery 
disease/acute myocardial infarction (ZFAS1, UCA1, 
HOTAIR, LIPCAR, ANRIL, KCNQ1OT1, LncPPARδ*, 
CoroMarker) and heart failure (SENCR, NRON, LIPCAR, 
MHRT), encouraging future studies to determine the value 
of lncRNAs as novel cardiac biomarkers (38,69,74-79).

Moreover, circRNAs have a great potential as they 
are extraordinarily more stable in body fluids than other 
noncoding RNAs because their circularization protects 
them from endonuclease activities (80).

Several studies have also reported circRNAs as diagnostic 
and prognostic biomarkers of CVD (4,19). For instance, 
a clinical study identified a circRNA, MICRA, whose 
expression levels measured at reperfusion in peripheral 
blood samples of 642 patients with acute myocardial 
infarction from two independent cohorts, predicted left 
ventricular dysfunction after 3 to 4 months (81).

Furthermore, a circRNA, designated circRNA_081881, 
may be correlated with myocardial infarction since it was 
down‐regulated more than 10‐fold in blood samples of 
patients (82).

An increased risk of atherosclerosis has been associated 
with the circular isoform of ANRIL (cANRIL) that is 
associated with the INK4/ARF locus on human chromosome 
9p21 (83).

A very recent study investigated the circRNA profile 
in the peripheral blood of patients with coronary artery 
disease, reporting a circRNA (hsa_circ_0124644) as a 
biomarker with a great diagnostic value for the disease (84).

The main circulating ncRNAs involved in the CVDs are 
summarized in Figure 2.

Concluding remarks and future perspectives

In conclusion, ncRNAs are ubiquitous RNA molecules that 
play a key role in modulating the molecular mechanisms 
underlying the pathogenesis of the CVD. Accordingly, 
there are attractive and promising applications of ncRNAs 

in the diagnosis and treatment of these diseases (3-6).
From a therapeutic perspective, the use of molecules 

to inhibit or overexpress small and long ncRNAs could be 
used as novel therapeutic strategy to combat various cardiac 
disorders.

For instance, pharmacological inhibition of miRNA-33a 
and miRNA-33b (miRNAs involved in the regulation of 
cholesterol transport) led to an increased levels of plasma 
HDL cholesterol and a coincident reduction of VLDL 
triglycerides without any adverse side effects in non-human 
primates, supporting the development of antagonists (also 
called antagomiRs or blockmiRs) of miRNA-33 as potential 
therapeutics for dyslipidemia and related atherosclerotic 
diseases (85).

Furthermore, inhibition of miRNA-29 in vivo abrogates 
aortic dilation in mice, suggesting that blocking miRNA-29 
may represent a potential molecular target to treat aortic 
aneurysms (86).

On the other hand, the administration of systemic 
miRNAs through miRNA mimics or introducing genes 
coding for miRNAs into viral constructs could be an 
attractive therapeutic approach for many diseases (87).

In the cardiovascular field, it has been recently shown 
that the overexpression with mimic (88) or adeno-associated 
virus-mediated cardiomyocyte-targeted expression of  
miR-378 (89) produced significant anti-apoptotic and 
anti-hypertrophic activities in cardiac cells, representing a 
potential treatment for ischemic heart disease. Additionally, 
a recent study demonstrated the feasibility of using viral-
based delivery of DNA code for non-native miRNA in vivo 
to significantly limit target RNA translation in the whole 
heart (90).

The miRNA-based therapy to inhibit an overexpressed 
miRNA during diseased condition or to mimic a disease–
down-regulated miRNA is schematized in Figure 3.

In spite of these encouraging premises, there is still 
much to learn and several concerns need to be addressed 
before ncRNAs can be deployed as a therapeutic option in 
cardiovascular conditions. Indeed, the fact that miRNA or 
long ncRNAs exert broad effects on multiple pathological 
pathways can be viewed as a major limitation with regard to 
both therapeutic efficacy and “off-targets” systemic effects 
(4-6). Therefore, further research on the enhancement 
of target affinity, stability and specificity are required to 
overcome the off-target effects and potential toxicity before 
ncRNA therapeutics can be used safely and effectively in 
the clinical setting.

Further studies are warranted to exhaustively elucidate 
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Figure 2 Overview of circulating ncRNAs as diagnostic and prognostic biomarkers from studies on different cardiovascular diseases.

Figure 3 Schematic representation of miRNAs manipulation with miRNA mimics or antagomir developed in viral and/or nonviral vectors.
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ncRNAs changes and their underlying mechanisms in 
various cardiovascular pathological settings, especially 
regarding the cardiac function of the lncRNAs and 
circRNAs.

From a clinical viewpoint, ncRNAs are emerging as 
novel biomarkers for the diagnosis and disease progression 
of different cardiovascular conditions.

Nevertheless, several problems still remain unresolved 
mainly due to the lack of reproducibility across different 

studies that may hamper the transition of these circulating 
biomarkers from promising tools to clinical practice. 
Several methodological aspects related to sample collection, 
measure methodology and normalization seem to explain 
the lack of reproducibility in different published studies 
(91,92). Thus, technological advances are necessary to 
ensure fast, reliable and reproducible results for the absolute 
quantification of circulating ncRNA. The small sample size 
with reduced statistical power is another relevant problem 



Non-coding RNA Investigation, 2018 Page 7 of 10

© Non-coding RNA Investigation. All rights reserved. Non-coding RNA Investig 2018;2:63ncri.amegroups.com

that may have contributed to many discordant published 
results (91). Large-scale studies performed in a collaborative 
manner are also required to further validate the potential of 
ncRNAs as biomarkers as well as to facilitate their transfer 
into clinics.

In conclusion, ncRNA research is a very fascinating 
and challenging field that certainly will improve the 
knowledge of the molecular mechanisms at the basis of 
some cardiovascular conditions, giving the opportunity 
to develop new diagnostic and therapeutic approaches. 
However, it is a long road from a proof of concept to their 
widespread use as early and specific biomarkers of CVDs. 
It is appealing to identify specific biomarkers other than 
the ones conventionally used, for a precise risk stratification 
in patients with cardiovascular conditions. More work is 
needed but ncRNA are here to stay.
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